Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1989357

ABSTRACT

Lung surfactant protein D (SP-D) and Dendritic cell-specific intercellular adhesion molecules-3 grabbing non-integrin (DC-SIGN) are pathogen recognising C-type lectin receptors. SP-D has a crucial immune function in detecting and clearing pulmonary pathogens;DC-SIGN is involved in facilitating dendritic cell interaction with naïve T cells to mount an anti-viral immune response. SP-D and DC-SIGN have been shown to interact with various viruses, including SARS-CoV-2, an enveloped RNA virus that causes COVID-19. A recombinant fragment of human SP-D (rfhSP-D) comprising of α-helical neck region, carbohydrate recognition domain, and eight N-terminal Gly-X-Y repeats has been shown to bind SARS-CoV-2 Spike protein and inhibit SARS-CoV-2 replication by preventing viral entry in Vero cells and HEK293T cells expressing ACE2. DC-SIGN has also been shown to act as a cell surface receptor for SARS-CoV-2 independent of ACE2. Since rfhSP-D is known to interact with SARS-CoV-2 Spike protein and DC-SIGN, this study was aimed at investigating the potential of rfhSP-D in modulating SARS-CoV-2 infection. Coincubation of rfhSP-D with Spike protein improved the Spike Protein: DC-SIGN interaction. Molecular dynamic studies revealed that rfhSP-D stabilised the interaction between DC-SIGN and Spike protein. Cell binding analysis with DC-SIGN expressing HEK 293T and THP- 1 cells and rfhSP-D treated SARS-CoV-2 Spike pseudotypes confirmed the increased binding. Furthermore, infection assays using the pseudotypes revealed their increased uptake by DC-SIGN expressing cells. The immunomodulatory effect of rfhSP-D on the DC-SIGN: Spike protein interaction on DC-SIGN expressing epithelial and macrophage-like cell lines was also assessed by measuring the mRNA expression of cytokines and chemokines. RT-qPCR analysis showed that rfhSP-D treatment downregulated the mRNA expression levels of pro-inflammatory cytokines and chemokines such as TNF-α, IFN-α, IL-1β, IL- 6, IL-8, and RANTES (as well as NF-κB) in DC-SIGN expressing cells challenged by Spike protein. Furthermore, rfhSP-D treatment was found to downregulate the mRNA levels of MHC class II in DC expressing THP-1 when compared to the untreated controls. We conclude that rfhSP-D helps stabilise the interaction between SARS- CoV-2 Spike protein and DC-SIGN and increases viral uptake by macrophages via DC-SIGN, suggesting an additional role for rfhSP-D in SARS-CoV-2 infection.

2.
Clin Exp Allergy ; 52(8): 922-923, 2022 08.
Article in English | MEDLINE | ID: covidwho-1968074
4.
Clin Exp Allergy ; 52(3): 364-366, 2022 03.
Article in English | MEDLINE | ID: covidwho-1735895
5.
Allergy ; 77(8): 2313-2336, 2022 08.
Article in English | MEDLINE | ID: covidwho-1685186

ABSTRACT

Immune modulation is a key therapeutic approach for allergic diseases, asthma and autoimmunity. It can be achieved in an antigen-specific manner via allergen immunotherapy (AIT) or in an endotype-driven approach using biologicals that target the major pathways of the type 2 (T2) immune response: immunoglobulin (Ig)E, interleukin (IL)-5 and IL-4/IL-13 or non-type 2 response: anti-cytokine antibodies and B-cell depletion via anti-CD20. Coronavirus disease 2019 (COVID-19) vaccination provides an excellent opportunity to tackle the global pandemics and is currently being applied in an accelerated rhythm worldwide. The vaccine exerts its effects through immune modulation, induces and amplifies the response against the severe acute respiratory syndrome coronavirus (SARS-CoV-2). Thus, as there may be a discernible interference between these treatment modalities, recommendations on how they should be applied in sequence are expected. The European Academy of Allergy and Clinical Immunology (EAACI) assembled an expert panel under its Research and Outreach Committee (ROC). This expert panel evaluated the evidence and have formulated recommendations on the administration of COVID-19 vaccine in patients with allergic diseases and asthma receiving AIT or biologicals. The panel also formulated recommendations for COVID-19 vaccine in association with biologicals targeting the type 1 or type 3 immune response. In formulating recommendations, the panel evaluated the mechanisms of COVID-19 infection, of COVID-19 vaccine, of AIT and of biologicals and considered the data published for other anti-infectious vaccines administered concurrently with AIT or biologicals.


Subject(s)
Asthma , Biological Products , COVID-19 , Hypersensitivity , Allergens , Biological Products/therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines , Desensitization, Immunologic , Humans , Immunoglobulin E , SARS-CoV-2 , Vaccination
6.
Clin Exp Allergy ; 52(1): 4-6, 2022 01.
Article in English | MEDLINE | ID: covidwho-1630601
7.
Allergy ; 77(7): 2067-2079, 2022 07.
Article in English | MEDLINE | ID: covidwho-1480087

ABSTRACT

BACKGROUND: mRNA-based COVID-19 vaccines have been reported to induce hypersensitivity reactions (HSR) in a small number of individuals. We aimed to evaluate the real-world incidence of the BNT162b2 mRNA COVID-19 vaccine HSR and to determine the value of the basophil activation test (BAT) in the allergological workup of patients reporting these reactions. METHODS: We prospectively enrolled patients with a clinical history indicative of HSR to the BNT162b2 mRNA COVID-19 vaccine. The allergological workup included skin testing (STs) and BAT with polyethylene glycol (PEG) and the vaccine. In those with negative allergy assessments, the administration of the second dose of the BNT162b2 mRNA COVID-19 vaccine was offered. RESULTS: Seventeen adults were included. Eleven cases (64.7%) tested negative in the allergological workup and tolerated the re-administration of the second dose of the vaccine and considered non-allergic. Six cases (35.3%) were considered allergic and classified into three groups: 2 subjects displayed positive STs and/or BAT to PEG (Group A), two individuals displayed positive BAT to the vaccine (Group B), and in 2 patients with moderate or severe reactions, the culprit was not identified, tested negative to STs and BAT to both PEG and vaccine (Group C). We further evaluated the value of BAT when the results were positive to the vaccine and negative to PEG by performing BAT in controls groups, finding positive BAT results in 50% of controls, all of them recovered from COVID-19 infection. In contrast, BAT was negative in patients who had not suffered from COVID-19 disease. CONCLUSIONS: BAT can be used as a potential diagnostic tool for confirming allergy to PEG excipient but not to the vaccine as a positive result in BAT may indicate a past COVID-19 infection instead of an allergy.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19 , Drug Hypersensitivity , Adult , BNT162 Vaccine , Basophil Degranulation Test/methods , Basophils , COVID-19/diagnosis , COVID-19/prevention & control , Drug Hypersensitivity/diagnosis , Humans , RNA, Messenger
8.
JAMA Netw Open ; 4(9): e2125524, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1414844

ABSTRACT

Importance: As of May 2021, more than 32 million cases of COVID-19 have been confirmed in the United States, resulting in more than 615 000 deaths. Anaphylactic reactions associated with the Food and Drug Administration (FDA)-authorized mRNA COVID-19 vaccines have been reported. Objective: To characterize the immunologic mechanisms underlying allergic reactions to these vaccines. Design, Setting, and Participants: This case series included 22 patients with suspected allergic reactions to mRNA COVID-19 vaccines between December 18, 2020, and January 27, 2021, at a large regional health care network. Participants were individuals who received at least 1 of the following International Statistical Classification of Diseases and Related Health Problems, Tenth Revision anaphylaxis codes: T78.2XXA, T80.52XA, T78.2XXD, or E949.9, with documentation of COVID-19 vaccination. Suspected allergy cases were identified and invited for follow-up allergy testing. Exposures: FDA-authorized mRNA COVID-19 vaccines. Main Outcomes and Measures: Allergic reactions were graded using standard definitions, including Brighton criteria. Skin prick testing was conducted to polyethylene glycol (PEG) and polysorbate 80 (P80). Histamine (1 mg/mL) and filtered saline (negative control) were used for internal validation. Basophil activation testing after stimulation for 30 minutes at 37 °C was also conducted. Concentrations of immunoglobulin (Ig) G and IgE antibodies to PEG were obtained to determine possible mechanisms. Results: Of 22 patients (20 [91%] women; mean [SD] age, 40.9 [10.3] years; 15 [68%] with clinical allergy history), 17 (77%) met Brighton anaphylaxis criteria. All reactions fully resolved. Of patients who underwent skin prick tests, 0 of 11 tested positive to PEG, 0 of 11 tested positive to P80, and 1 of 10 (10%) tested positive to the same brand of mRNA vaccine used to vaccinate that individual. Among these same participants, 10 of 11 (91%) had positive basophil activation test results to PEG and 11 of 11 (100%) had positive basophil activation test results to their administered mRNA vaccine. No PEG IgE was detected; instead, PEG IgG was found in tested individuals who had an allergy to the vaccine. Conclusions and Relevance: Based on this case series, women and those with a history of allergic reactions appear at have an elevated risk of mRNA vaccine allergy. Immunological testing suggests non-IgE-mediated immune responses to PEG may be responsible in most individuals.


Subject(s)
COVID-19 Vaccines/adverse effects , Hypersensitivity/diagnosis , Adolescent , Adult , Aged , COVID-19 Vaccines/therapeutic use , Drug-Related Side Effects and Adverse Reactions/diagnosis , Drug-Related Side Effects and Adverse Reactions/epidemiology , Female , Humans , Hypersensitivity/epidemiology , Male , Middle Aged , Risk Factors , United States/epidemiology , United States Food and Drug Administration/organization & administration , United States Food and Drug Administration/statistics & numerical data , Vaccination/adverse effects
9.
Clin Exp Allergy ; 51(9): 1100-1102, 2021 09.
Article in English | MEDLINE | ID: covidwho-1388227
10.
Allergy ; 77(2): 454-468, 2022 02.
Article in English | MEDLINE | ID: covidwho-1327506

ABSTRACT

One hundred and ten years after Noon's first clinical report of the subcutaneous application of allergen extracts, allergen immunotherapy (AIT) has evolved as the most important pillar of the treatment of allergic patients. It is the only disease-modifying treatment option available and the evidence for its clinical efficacy and safety is broad and undisputed. Throughout recent decades, more insights into the underlying mechanisms, in particular the modulation of innate and adaptive immune responses, have been described. AIT is acknowledged by worldwide regulatory authorities, and following the regulatory guidelines for product development, AIT products are subject to a rigorous evaluation before obtaining market authorization. Knowledge and practice are anchored in international guidelines, such as the recently published series of the European Academy of Allergy and Clinical Immunology (EAACI). Innovative approaches continue to be further developed with the focus on clinical improvement by, for example, the usage of adjuvants, peptides, recombinants, modification of allergens, new routes of administration, and the concomitant use of biologicals. In addition, real-life data provide complementary and valuable information on the effectiveness and tolerability of this treatment option in the clinical routine. New mobile health technologies and big-data approaches will improve daily treatment convenience, adherence, and efficacy of AIT. However, the current coronavirus disease 2019 (COVID-19) pandemic has also had some implications for the feasibility and practicability of AIT. Taken together, AIT as the only disease-modifying therapy in allergic diseases has been broadly investigated over the past 110 years laying the path for innovations and further improvement.


Subject(s)
COVID-19 , Hypersensitivity , Allergens , Desensitization, Immunologic , Humans , Hypersensitivity/therapy , SARS-CoV-2
11.
Allergy ; 76(6): 1640-1660, 2021 06.
Article in English | MEDLINE | ID: covidwho-1165739

ABSTRACT

Vaccines are essential public health tools with a favorable safety profile and prophylactic effectiveness that have historically played significant roles in reducing infectious disease burden in populations, when the majority of individuals are vaccinated. The COVID-19 vaccines are expected to have similar positive impacts on health across the globe. While serious allergic reactions to vaccines are rare, their underlying mechanisms and implications for clinical management should be considered to provide individuals with the safest care possible. In this review, we provide an overview of different types of allergic adverse reactions that can potentially occur after vaccination and individual vaccine components capable of causing the allergic adverse reactions. We present the incidence of allergic adverse reactions during clinical studies and through post-authorization and post-marketing surveillance and provide plausible causes of these reactions based on potential allergenic components present in several common vaccines. Additionally, we review implications for individual diagnosis and management and vaccine manufacturing overall. Finally, we suggest areas for future research.


Subject(s)
COVID-19 , Hypersensitivity , Vaccines , COVID-19 Vaccines , Humans , Hypersensitivity/diagnosis , Hypersensitivity/epidemiology , Hypersensitivity/etiology , Pandemics , SARS-CoV-2 , Vaccines/adverse effects
12.
Clin Exp Allergy ; 51(3): 380-381, 2021 03.
Article in English | MEDLINE | ID: covidwho-1146047
13.
Allergy ; 76(6): 1629-1639, 2021 06.
Article in English | MEDLINE | ID: covidwho-1031015

ABSTRACT

The first approved COVID-19 vaccines include Pfizer/BioNTech BNT162B2, Moderna mRNA-1273 and AstraZeneca recombinant adenoviral ChAdOx1-S. Soon after approval, severe allergic reactions to the mRNA-based vaccines that resolved after treatment were reported. Regulatory agencies from the European Union, Unites States and the United Kingdom agree that vaccinations are contraindicated only when there is an allergy to one of the vaccine components or if there was a severe allergic reaction to the first dose. This position paper of the European Academy of Allergy and Clinical Immunology (EAACI) agrees with these recommendations and clarifies that there is no contraindication to administer these vaccines to allergic patients who do not have a history of an allergic reaction to any of the vaccine components. Importantly, as is the case for any medication, anaphylaxis may occur after vaccination in the absence of a history of allergic disease. Therefore, we provide a simplified algorithm of prevention, diagnosis and treatment of severe allergic reactions and a list of recommended medications and equipment for vaccine centres. We also describe potentially allergenic/immunogenic components of the approved vaccines and propose a workup to identify the responsible allergen. Close collaboration between academia, regulatory agencies and vaccine producers will facilitate approaches for patients at risks, such as incremental dosing of the second injection or desensitization. Finally, we identify unmet research needs and propose a concerted international roadmap towards precision diagnosis and management to minimize the risk of allergic reactions to COVID-19 vaccines and to facilitate their broader and safer use.


Subject(s)
COVID-19 Vaccines , COVID-19 , BNT162 Vaccine , Humans , SARS-CoV-2 , United Kingdom
14.
Allergy ; 76(6): 1624-1628, 2021 06.
Article in English | MEDLINE | ID: covidwho-998737

ABSTRACT

Further to the approval of the Coronavirus disease 2019 (COVID-19) vaccine BNT162b2, several severe anaphylaxis cases occured within the first few days of public vaccination. An investigation is taking place to understand the cases and their triggers. The vaccine will be administered to a large number of individuals worldwide and there are raising concerns that severe adverse events might occur. With the current information, the European Academy of Allergy and Clinical Immunology (EAACI) states its position for the following preliminary recommendations that are to be revised as soon as more data emerge. To minimize the risk of severe allergic reactions in vaccinated individuals, it is urgently required to understand the specific nature of the reported severe allergic reactions, including the background medical history of the individuals affected and the mechanisms involved. To achieve this goal, all clinical and laboratory information should be collected and reported. Mild and moderate allergic patients should not be excluded from the vaccine as this could have a significant impact on reaching the goal of population immunity. Healthcare practitioners vaccinating against COVID-19 are required to be sufficiently prepared to recognize and treat anaphylaxis properly with the ability to administer adrenaline. Further to vaccine administration, a mandatory observation period of at least 15 minutes should be followed for all individuals. The current data have not shown any higher risk for patients suffering from allergic rhinitis or asthma, and this message should be clearly stated by physicians to enable our patients to trust the vaccine. More than 30% of the population suffers from allergic diseases and the benefit of the vaccination clearly outweighs the risk of severe COVID-19 development.


Subject(s)
COVID-19 , Vaccines , BNT162 Vaccine , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccines/adverse effects
15.
Allergy ; 75(10): 2445-2476, 2020 10.
Article in English | MEDLINE | ID: covidwho-614472

ABSTRACT

With the worldwide spread of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) resulting in declaration of a pandemic by the World Health Organization (WHO) on March 11, 2020, the SARS-CoV-2-induced coronavirus disease-19 (COVID-19) has become one of the main challenges of our times. The high infection rate and the severe disease course led to major safety and social restriction measures worldwide. There is an urgent need of unbiased expert knowledge guiding the development of efficient treatment and prevention strategies. This report summarizes current immunological data on mechanisms associated with the SARS-CoV-2 infection and COVID-19 development and progression to the most severe forms. We characterize the differences between adequate innate and adaptive immune response in mild disease and the deep immune dysfunction in the severe multiorgan disease. The similarities of the human immune response to SARS-CoV-2 and the SARS-CoV and MERS-CoV are underlined. We also summarize known and potential SARS-CoV-2 receptors on epithelial barriers, immune cells, endothelium and clinically involved organs such as lung, gut, kidney, cardiovascular, and neuronal system. Finally, we discuss the known and potential mechanisms underlying the involvement of comorbidities, gender, and age in development of COVID-19. Consequently, we highlight the knowledge gaps and urgent research requirements to provide a quick roadmap for ongoing and needed COVID-19 studies.


Subject(s)
Betacoronavirus/immunology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Academies and Institutes , COVID-19 , COVID-19 Testing , Coronavirus Infections/pathology , Humans , Pandemics , Pneumonia, Viral/pathology , SARS-CoV-2
16.
Allergy ; 75(7): 1546-1554, 2020 07.
Article in English | MEDLINE | ID: covidwho-116569
SELECTION OF CITATIONS
SEARCH DETAIL